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Abstract

An increase in RHIC collision luminosity is possible by
reducing the beam size at the interaction point (IP). We
present a method for reducing the IP beta function, β∗,
from the design minimum of 1m to 0.5m. We demonstrate
that this β∗=0.5m configuration is achievable with exist-
ing RHIC power supplies for 100GeV protons. We discuss
the correction of the higher order IR multi-poles and the
second order chromaticity.

INTRODUCTION

RHIC consists two rings, each ring has 6 interaction re-
gions (IRs). At the center of each IR is the IP, where col-
lisions can occur. Each IR consists of 9 quadrupoles on
each side of the IP organized anti-symmetrically. These
quadrupoles can be further subdivided into a dispersion
suppressor and telescope. Our goal is to reduce the beam
size at the IP. This is achieved by reducing the beta function
and dispersion at the IP. A schematic is shown in Fig. 4. In
the next section, we discuss the β∗ squeeze.

β∗ SQUEEZE

We will find the quadrupole strengths shown in Fig. 4
to produce a lattice with a given β∗ at the IP. With this
design we have 12 parameters to vary. The procedure used
requires meeting these 14 constraints:

• β∗
x = β∗

y = β∗ (2 constraints).
• η∗ = 0 and α∗

x = α∗
y = 0 (3 constraints).

• βmaxx
= βmaxy

in the triplets (1 constraint).
• Matching the Insertion to the arcs (6 constraints).
• Getting the correct tunes (2 constraints).

Using the MAD program [1], the optics were fit from
β∗ = 1m to β∗ = 0.5m. Additionally, the strengths for the
quadrupoles are calculated from the power supply currents
by using a 5th order polynomial fit to the measured transfer
function (averaged over all quadrupoles of the same type).
Fig. 1 gives the resulting penalty function. Fig. 2 gives the
final power supply currents for 100GeV protons. This is
after some additional smoothing with the ends fixed. Fig. 3
shows the beta function plot for a RHIC insertion at β∗ =
0.5m.

Shunt and Trim Supplies

Each half of the insertion is controlled by 3 trim power
supplies for the trim quadrupoles next to Q4, Q5 and Q6.
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Figure 1: The final penalty function vs β∗
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Figure 2: The shunt and trim supplies for the RHIC inser-
tion as a function of β∗. Note, IQT4 = IQT4I = IQT4O =
-IQT5I = -IQT5O and IQ456 is fixed to a function of β∗.

Furthermore, the inner and outer trim supplies can be in-
dependently controlled. On the QF main bus there are 5
shunt supplies for the main quadrupoles from Q1 through
Q7. The QD bus has two shunt supplies per half insertion
for controlling QFA(B) and the QDA quadrupoles. One is
common between inner and outer, while two others can be
independently controlled. The following tables gives the
limits on these power supplies:

A comparison of the required currents given in Fig. 2
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Figure 3: The RHIC insertion optics with β∗ = 0.5m.
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Figure 4: A schematic for half of the RHIC insertion. The quadrupoles Q4, Q5 and Q6 have associated trim quadrupoles.
Q4 and Q5 trims are set to the same, but opposite strengths. Antisymmetry is broken for the trim quadrupole at Q6 and
the quadrupoles at QFA(B). This leads to 12 adjustable parameters (including QF and QD).

Table 1: Shunt and Trim power supplies
Supply Minimum [Amps] Maximum [Amps]
Trim -150 150
IQFA(B) 1 200
IQDA -300 300
IQ7 1 600
IQ456 1 450
IQ3 1 300
IQ2 -150 150
IQ1 1 200

with the power supply limits given in Table 1 shows that
the required currents are within the power supply limits.

Matching to Existing Squeeze

RHIC squeezes from β∗ of 10m to 1m with an existing
solution. A lot of effort went into optimizing the tunes,
chromaticity, orbit, coupling, etc. with this squeeze. A
smooth transition in the power supply currents from the
new squeeze of 1m to 0.5m to the existing squeeze is re-
quired. To create a ramp with a β∗ squeeze, a function
β∗(time[sec]) must be carefully chosen so that the changes
to the power supply currents remain smooth throughout
the squeeze. This is accomplished with the quadrupole
strength values K(β∗) (see Fig. 5) for each quadrupole,
along with the values of dK(β∗)/dβ∗. Furthermore, some
smoothing may be necessary to achieve the final goal. Fi-
nally, modeling from MAD does not necessarily agree with
the machine model due to differences in the MAD descrip-
tion and the real machine. One example: all focusing
quadrupoles do not have the same strength even when con-
nected to the same current bus due to differences in the
integrated strengths of these magnets.

NONLINEAR CORRECTION

The large βmax = 2.66km in the triplets leads to some
undesirable effects that must be corrected. Additionally,
if the beams 95% normalized emittance is 20πmm-mrad,
the triplet’s beam size is σ = 9mm for 100GeV protons.
Since the triplet aperture is 56.5mm, this is quite tight. Fur-
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Figure 5: The gradient strengths for protons at 100GeV vs.
β∗.

thermore, the dispersion in the triplets is ±2m, which is af-
fected by the momentum spread. This creates aperture con-
straints in the triplets, high order chromatic effects, triplet
multi-pole problems, etc. We start with the multi-poles ef-
fects and correction.

IR Multi-Pole Correction

In two of the IR’s, we have high order correctors to im-
prove dynamic aperture for the low β∗ insertions. There is
an operational tool [2] to measure the effect of the triplet
multi-poles on the tune spread and calculate the corre-
sponding corrector strengths. An orbit bump is applied
through the triplets and the tune variations is measured with
the PLL tune-meter [3]. We obtain a data set of the tune
versus orbit bump amplitude. This data is then fit to poly-
nomial. From the polynomial coefficients, the multi-pole
correction strengths can be determined. Furthermore, the
bump can be horizontal or vertical so that the skew multi-
poles can be corrected as well. Next we discuss chromatic
effects.

Nonlinear Chromatic Correction

Besides transverse effects there are longitudinal effects
as well. A beam with a momentum spread produces a
tune spread from chromatic effects. The most significant
contribution to chromatic effects are the triplets in RHIC.
The large βmax exasperates the problem. Using the MAD



Figure 6: The RHIC optics parameters. The Star insertion is set to β∗ = 1m, Phenix has β∗ = 0.5m, Phobos and Brahms
are at β∗ = 3m and the remaining insertions have β∗ = 10m

model with the design optics Fig. 6, the amplitude and
chromatic terms can be calculated as:

νx = νx0 − 644εx − 1753εy + 2δ − 623δ2 − 211100δ3

νy = νx0 − 1753εx + 390εy + 2δ + 1727δ2 + 80400δ3

Both the second and third order terms become significant
when ∆p/p � 0.003 in the horizontal plane and the sec-
ond order term becomes significant when ∆p/p � 0.001
Compare this with the chromatic terms if we set the Phenix
insertion to β∗ = 1m (this is the current optics in RHIC for
the Run 2003 polarized proton operation) instead:

νx = νx0 − 447εx − 1203εy + 2δ + 209δ2 − 134000δ3

νy = νx0 − 1203εx + 269εy + 2δ + 977δ2 − 31500δ3

A preliminary measurement of the second order chromatic-
ity has produced numbers similar in magnitude to those
above. A more detailed analysis of these results needs to
be done.

The second order chromaticity can be corrected in RHIC
by either using four families of sextupoles [4] or using four
families of octupoles which are organized as two families
in high dispersion regions and two families in low disper-
sion regions. The two families in the high dispersion re-
gions correct the second order chromaticity while the two
families in the low dispersion region are used to correct
the tune spread from the first two families. Since, the oc-
tupoles are wired in this fashion, we would correct second
order chromaticity by this method.

SUMMARY

We presented a design for the RHIC insertion that
achieves a β∗ = 0.5m at the IP. This design works with the
existing power supplies for protons at 100GeV . We dis-
cuss how to implement this solution with the existing β∗

squeeze ramp. Furthermore, correction of the triplet mul-
tipoles and second order chromaticity is discussed as well.
Further studies for dynamic aperture should be done due
to the tight space available in the triplets. We plan to have
beam studies with this insertion in the future.

REFERENCES

[1] H. Grote, F. C. Iselin, “The MAD Program User’s Reference
Manual”, CERN/SL/90-13(AP) (1995)

[2] F. Pilat, P. Cameron, V. Ptitsyn, J. P. Koutchouk, “Nonlinear
Effects in the RHIC Interaction Regions: Modeling, Mea-
surement Correction”, these proceedings (TPPB041)

[3] P. Cameron, J. Cupolo, W. Dawson, C. Degen, A. Del-
laPenna, M. Kesselman, A. Marusic, J. Mead, C. Schultheiss,
R. Sikora, K. Vetter, “RHIC Third Generation PLL Tune Sys-
tem”, these proceedings (ROAB009)

[4] W. Scandale, S. Tepikian, “Chromatic Correction of RHIC
when One or Two Insertions is at β∗ = 0.5m”, RHIC/AP/45
(November, 1994)


